Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biotechniques ; 72(5): 207-218, 2022 05.
Article in English | MEDLINE | ID: covidwho-1779828

ABSTRACT

We have developed a new Western blotting method of native proteins from agarose-based gel electrophoresis using a buffer at pH 6.1 containing basic histidine and acidic 2-(N-morpholino)ethanesulfonic acid. This gel electrophoresis successfully provided native structures for a variety of proteins and macromolecular complexes. This paper is focused on the Western blotting of native protein bands separated on agarose gels. Two blotting methods from agarose gel to PVDF membrane are introduced here, one by contact (diffusion) blotting and another by electroblotting after pre-treating the agarose gels with SDS. The contact blotting resulted in the transfer of native GFP, native human plexin domain containing protein 2 (PLXDC2) and native SARS-CoV-2 spike protein, which were detected by conformation-specific antibodies generated in-house.


Subject(s)
COVID-19 , SARS-CoV-2 , Blotting, Western , Electrophoresis, Agar Gel/methods , Electrophoresis, Polyacrylamide Gel , Gels , Humans , Proteins/chemistry , Sepharose/chemistry , Spike Glycoprotein, Coronavirus
2.
PLoS One ; 17(1): e0262170, 2022.
Article in English | MEDLINE | ID: covidwho-1637228

ABSTRACT

The SARS-CoV-2 responsible for the ongoing COVID pandemic reveals particular evolutionary dynamics and an extensive polymorphism, mainly in Spike gene. Monitoring the S gene mutations is crucial for successful controlling measures and detecting variants that can evade vaccine immunity. Even after the costs reduction resulting from the pandemic, the new generation sequencing methodologies remain unavailable to a large number of scientific groups. Therefore, to support the urgent surveillance of SARS-CoV-2 S gene, this work describes a new feasible protocol for complete nucleotide sequencing of the S gene using the Sanger technique. Such a methodology could be easily adopted by any laboratory with experience in sequencing, adding to effective surveillance of SARS-CoV-2 spreading and evolution.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Genes, Viral , Pandemics/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Spike Glycoprotein, Coronavirus/genetics , Base Sequence , Brazil/epidemiology , COVID-19/virology , Diagnostic Tests, Routine/methods , Electrophoresis, Agar Gel/methods , Epidemiological Monitoring , Humans , Mutation , RNA, Viral/genetics , RNA, Viral/isolation & purification
3.
Sci Rep ; 11(1): 21658, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1503936

ABSTRACT

More than one year since Coronavirus disease 2019 (COVID-19) pandemic outbreak, the gold standard technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection is still the RT-qPCR. This is a limitation to increase testing capacities, particularly at developing countries, as expensive reagents and equipment are required. We developed a two steps end point RT-PCR reaction with SARS-CoV-2 Nucleocapsid (N) gene and Ribonuclease P (RNase P) specific primers where viral amplicons were verified by agarose gel electrophoresis. We carried out a clinical performance and analytical sensitivity evaluation for this two-steps end point RT-PCR method with 242 nasopharyngeal samples using the CDC RT-qPCR protocol as a gold standard technique. With a specificity of 95.8%, a sensitivity of 95.1%, and a limit of detection of 20 viral RNA copies/uL, this two steps end point RT-PCR assay is an affordable and reliable method for SARS-CoV-2 detection. This protocol would allow to extend COVID-19 diagnosis to basic molecular biology laboratories with a potential positive impact in surveillance programs at developing countries.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19 Nucleic Acid Testing/economics , COVID-19 Testing/methods , Coronavirus Nucleocapsid Proteins/genetics , DNA Primers , Electrophoresis, Agar Gel/methods , Humans , Laboratories , Nasopharynx/virology , RNA, Viral/genetics , Ribonuclease P/genetics , Ribonuclease P/metabolism , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
4.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: covidwho-796906

ABSTRACT

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , DNA, Single-Stranded/genetics , Electrophoresis, Agar Gel/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Sequence Analysis, RNA/methods , Base Sequence , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Dengue/diagnosis , Dengue/virology , Dengue Virus/genetics , Electrophoresis, Agar Gel/economics , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Saliva/virology , Sequence Analysis, RNA/economics , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL